STUDIA I MATERIALY OCEANOLOGICZNE NR 64 MARINE POLLUTION (3)

National Scientific Committee on Oceanic Research PAS

(297-303) 1993

ISSN 0208-421x ISSN 0866-9201

JOLANTA MOROZIŃSKA JERZY ROKICKI Department of Invertebrate Zoology, University of Gdańsk, Gdynia, Poland

Remora remora Blue shark Prionace glauca Parasitic copepods

Relationship between echeneidid fish Remora remora (L.) and shark Prionace glauca (L.)

Manuscript received November 5, 1992; in final form August 19, 1993.

Abstract

Twenty one blue sharks *Prionace glauca* were examined and four *Remora remora* were collected from the gill cavities. Stomach contents of remoras were examined and parasitic copepods of family *Pandaridae* in different degree of digestion were found. In four sharks remoras were found in the gill cavities. Three of these sharks had no copepods, in one shark one copepod *Gangliopus pyriformis* was found in the gill cavity.

1. Introduction

Remora remora is a species in the family Echeneididae. All echeneidids are marine species commonly inhabiting tropical and subtropical waters. This group of fishes is characterized by the cephalic laminated adhesive disk which enables them to attach to many different marine animals and other objects. Most adult echeneidids attach to the external body surface of their host but their juveniles invade the gill cavity. Remora remora feed on plankton, primarily crustaceans, and are active ectoparasite pickers.

The important publications about echeneidids are of Cressey and Lachner (1970) who describe some species of echeneidids and their mutualistic relationship with the host. Schwartz and Lindquist (1987), Schwartz (1992) describe effects of parasitic behavior of echeneidids.

2. Materials and methods

Twenty one blue sharks *Prionace glauca* were examined (Tab. 1) and four *R. remora* were collected from the gill cavities. The sharks were caught in the central Atlantic (Fig. 1) in 1989 for technological purposes by the vessel 'Wieczno' of the Sea Fisheries Institute in Gdynia. They were stored frozen for a considerable time. The sharks were thawed on shore in the laboratory and examined.

Table 1. Data on copepods from examined sharks Prionace glauca

		- C:17		
Shark	Species of copepods	Gill cavity		Total
No		right	left	
1	Kroyeria lineata	73	62	
	Gangliopus pyriformis	5	5	145
2 .	Kroyeria lineata	23	11	
	Gangliopus pyriformis	5	3	51
3	Kroyeria lineata	142	68	
	$Gangliopus\ pyriform is$	9	4	
	$Phyllothyreus\ cornutus$	_	2	225
4	Kroyeria lineata	32	16	
4	•	2	7	57
	Gangliopus pyriformis	Z		31
• 5	Kroyeria lineata	8	16	24
6	Kroyeria lineata	77	88	
	Gangliopus pyriformis	3	2	170
		ა		
7	Kroyeria lineata	17	20	
	Gangliopus pyriformis	5	4	46
	TC	07	105	
8	Kroyeria lineata	97	105	00.4
•	Gangliopus pyriformis		2	204
9	Kroyeria lineata	35	24	
3	Pandarus bicolor	1	1	61
	I willed the victory	_	_	01

Table 1. continued

	Table 1. condi			
Shark	Species of copepods	Gill c	Total	
No		$_{ m right}$	left	
10	$Kroyeria\ lineata$	59	40	
	Gangliopus pyriformis	1	4	
	Pandarus bicolor	1		105
11	Kroyeria lineata	2	3	
	Gangliopus pyriformis	27	36	
	Pandarus bicolor	3	1	72
• 12	Kroyeria lineata	9	4	
	Gangliopus pyriformis	4	1	
	Pandarus bicolor	_	1	19
13	Kroyeria lineata	36	8	
10	Gangliopus pyriformis	2	$\frac{3}{2}$	48
14	Kroyeria lineata	40	87	
	Pandarus bicolor	5	5	137
15	Kroeyria lineata	148	237	
	Pandarus bicolor	4	1	390
16	Kroyeria lineata	48	36	
10	Pandarus bicolor	2	1	87
	1 anaarus vicotor	۷	1	01
17	Kroyeria lineata	48	37	
	Gangliopus pyriformis	2	1	91
• 18	Kroyeria lineata	10	22	
	Pandarus bicolor	-	1	33
• 19	Kroyeria lineata		0	
J 13	Gangliopus pyriformis	$\frac{-}{2}$	9	
	Pandarus bicolor	4	9	20
	r unuarus vicolor	4	6	30

Table 1. continued

Shark Species of copepods		Gill cavity		Total	
No		right	left		
20		Kroyeria lineata	34	25	
		Gangliopus pyriformis	8	6	
		Pandarus bicolor	10	11	99
21	,	Kroyeria lineata	18	1	
		Gangliopus pyriformis	1	3	
		Pandarus bicolor	4	1	28

- shark with remora

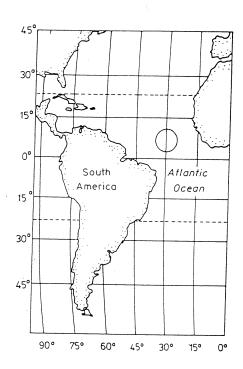


Fig. 1. \bigcirc Capture area of Prionace glauca: 3°20'- 8°21' N and 21°10' - 32°14' W

3. Results

The gill arches I–V were examined and *Remora remora* were found between the gill arches I–IV. These specimens were small juveniles ranging in size from 72 to 85 mm. Stomach contents from remoras were examined and parasitic copepods of Pandaridae were found to be an important part of the diet. Copepods were in different degrees of digestion. In three

Table 2. Data on parasitic copepods from sharks *Prionace glauca* with Remora remora

Shark		Gills					
No		I	II	III	IV	V	
5	L P	– Kl 3	Kl 8 Kl 4	Kl 3 Remore	Kl 4 a remora	Kl 1 Kl 1	
12	L	Kl 1	Kl 3 Gp 1	Remore	a remora	Pc 1	
	P	Gp 2 Kl 6	Gp1	Kl 1	Gp 1	Kl 2	
18	L	Kl 2	Kl 5	Kl 13 Pb 1	Kl 1	Kl 1	
	Р	Remora	ı remora	-	Kl 9	Kl 1	
19	L	Kl 1 Pb 1	Gp 3	Kl 6 Gp 2 Pb 2	Kl 1 Gp 3	Kl 1 Pb 3 Gp 1	
	P	Gp 1	Remora	remora Gp 1	Pb 3	Pb 1	

Kl – Kroyeria lineata, Gp – Gangliopus pyriformis, Pc – Phyllothyreus cornutus, Pb – Pandarus bicolor

sharks, in the gills with remoras parasites were absent and in one shark (No. 19) with a remora one Copepoda Gangliopus pyriformis was found (Tab. 2). The total number of copepods living in the gill cavities and on the surface of the body is lower for sharks with remora than for sharks without remora (Tab. 1).

4. Discussion

The small samples do not provide definitive information on the importance of parasitic copepods in remora diet. These observations agree with previous reports, Szidat and Nani (1951), Maul (1956), Cressey and Lachner (1970) who reported the occurrence of parasitic copepods in the remoras' stomachs. According to these authors younger individuals of remoras are more active ectoparasite pickers and the relationship between them and their hosts is very strongly mutualistic, relatively stable and of long duration.

The most important function is cleaning out but remoras are the cause of mechanical pressure on gill filaments and impede undesirable water flow across gill cavity. Remora seeks the gill cavity not only for parasitic food but also to protect itself from other predators. Perhaps small individuals leave the body and seek the gill cavity to avoid the competition from larger remoras, Cressey and Lachner (1970).

Sometimes they are the cause of abrasion on the skin or scales all to the muscles of their hosts, Schwartz and Lindquist (1987), Schwartz

(1992) thereby becoming parasites.

Croll (1977) describes the relationship between remora and their host as commensalism. This author gives some variety of commensalism (cleaning, protection, transport). Whole this variety is realized in very complicated and specific interaction between a remora in the gill cavity and a shark.

References

- Cressey R. F., Lachner E. A., 1970, The parasitic copeped diet and life history of diskfishes (Echeneidae), Copeia, 2, 310-318.
- Croll N.A., 1977, Parasitism and other relationships, PWN, 19-23, (in Polish).
- Maul G.E., 1956, Monografia dos peixes do museo municipal do Funchal ordem Discocephali, Bd. Mus. Mun. Funchal, 9, 23, 5-75.
- Schwartz F. J., Lindquist D. G., 1987, Observation on Mola Basking Behavior, parasites, echeneidid associations, and body organ weight relationship, J. Elisha Mitchell Sci. Soc., 103 (1), 14-20.

Relationship between echeneidid fish $Remora\ remora\ (L.)$ and shark $Prionace\ glauca\ (L.)303$

Schwartz F. J., 1992, Note, effectes of the sharksucker, Echeneids naucrates, family Echeneididae, on captive sheepshead, Archosargus probatocephalus, J. Elisha Mitchell Sci. Soc., 108 (1), 55-56.

Szidat L., Nani A., 1951, Las remoras del Atlantico austral con un estudio de su nutricion natural y des sus parasitos (Pisc. Echeneidae), Rev. Inst. Nac. Invest. Cien. Net., 2, 359-417.

21x

201

iora

uca

ods

were sitic arks one

neiical
ited
rine
territy.
tive
and
mu87),